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Abstract. Since the calculation of BR(B− → η′K−) in the framework of the QCD improved factorization
method developed by Beneke et al. leads to numerical values much below the experimental data, we include
two different contributions, in an alternative way. First, we find that the spectator hard-scattering mechanism
increases the BR value with almost 50%, but the predictions depend on the combined singularities in the
amplitude convolution. Secondly, by adding SUSY contributions to the Wilson coefficients, we come to a
BR depending on three parameters, whose values are constrained by the experimental data.

1 Introduction

As first evidence of a strong penguin, the B− → η′K− de-
cay has become of a real interest after CLEO announced its
large numerical value to be BR(B− → η′K−) = (6.5+1.5

−1.4 ±
0.9) × 10−5 [1], which could not be explained by the ex-
istent theoretical models. As improved measurements fol-
lowed, providing even larger values, (80+10

−9 ± 7) × 10−6

(CLEO [2]), (76.9 ± 3.5 ± 4.4) × 10−6 (BaBar [3]) and
(79+12

−11 ± 9) × 10−6 (Belle [4]), the inclusion of new contri-
butions for accommodating these data has quickly become
a real theoretical challenge. In this respect, perturbative
QCD mechanisms [5], with different η′g∗g∗ vertex func-
tions [5, 6], have been considered as the main candidates
for significantly increasing the BR(B− → η′K−) value.
On the other hand, while searching for physics beyond
the standard model (SM), supersymmetry has been em-
ployed in processes like B → J/ψK∗ [7], B → φK [8],
B → πK [9, 10], B → Xsγ [11], and deviations from the
SM predictions for the values of branching ratios and CP
asymmetries have been the main targets.

The present paper is organized as follows: in Sect. 2, we
compute the BR(B− → η′K−) in the improved factoriza-
tion approach developed by Beneke et al. [12]. Since we get
a BR much below the experimental values, we incorporate
two alternative contributions. The first one, presented in
Sect. 3, comes from the so-called spectator hard-scattering
mechanism. Following a similar approach as in [13], we
give a detailed calculation of the gluonic transition form
factor which plays an important role in the evaluation of
this contribution. Although it has been concluded that
this mechanism could provide large BR values [13], we
show that the presence of combined singularities in the
amplitude convolution is a source of large uncertainties.
In Sect. 4, we employ a supersymmetric approach and in-
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clude exchanges of gluino and squark with left–right squark
mixing. Working in the mass insertion approximation [14],
the values of the Wilson coefficients c8g and c7γ can be
significantly increased, by adding the SUSY contributions,
and this has a strong numerical impact in the branching
ratio estimation. Finally, one may use the experimental
data to impose constraints on the flavor changing SUSY
parameter δbs

LR.

2 Improved QCD factorisation

The relevant decay amplitude for B− → η′K−, in the
improved QCD factorization approach [12], is given by [5,
15]

A(B− → η′K−)

= −i
GF√

2
(m2

B −m2
η′)FB→η′

0 (m2
K)fK [VubV

∗
usa1(X)

+VpbV
∗
ps

(
ap
4(X) + ap

10(X) + rK
χ (ap

6(X) + ap
8(X))

)]
−i
GF√

2
(m2

B −m2
K)FB→K

0 (m2
η′)fu

η′ [VubV
∗
usa2(Y )

+VpbV
∗
ps [(a3(Y ) − a5(Y )) (2 + σ)

+
[
ap
4(Y ) − 1

2
ap
10(Y ) + r′

χ

(
ap
6(Y ) − 1

2
ap
8(Y )

)]
σ

+
1
2

(a9(Y ) − a7(Y )) (1 − σ)
]]
, (1)

where X = η′K and Y = Kη′, p is summed over u and
c, r′

χ = 2m2
η′/(mb −ms)(2ms), rK

χ = 2m2
K/mb(mu +ms),

σ = fs
η′/fu

η′ , and [12]

a1(M1M2) = c1 +
c2
Nc

[
1 +

CFαs

4π
(VM2 +H)

]
,
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a2(M1M2) = c2 +
c1
Nc

[
1 +

CFαs

4π
(VM2 +H)

]
,

a3(M1M2) = c3 +
c4
Nc

[
1 +

CFαs

4π
(VM2 +H)

]
,

ap
4(M1M2) = c4 +

c3
Nc

[
1 +

CFαs

4π
(VM2 +H)

]

+
CFαs

4πNc
P p

M2,2 ,

a5(M1M2) = c5 +
c6
Nc

[
1 +

CFαs

4π
(−12 − VM2 −H)

]
,

ap
6(M1M2) = c6 +

c5
Nc

(
1 − 6

CFαs

4π

)
+
CFαs

4πNc
P p

M2,3 ,

a7(M1M2) = c7 +
c8
Nc

[
1 +

CFαs

4π
(−12 − VM2 −H)

]
,

ap
8(M1M2) = c8 +

c7
Nc

(
1 − 6

CFαs

4π

)
+

α

9πNc
P p,EW

M2,3 ,

a9(M1M2) = c9 +
c10
Nc

[
1 +

CFαs

4π
(VM2 +H)

]
,

ap
10(M1M2) = c10 +

c9
Nc

[
1 +

CFαs

4π
(VM2 +H)

]

+
α

9πNc
P p,EW

M2,2 , (2)

where CF = (N2
c − 1)/2Nc and Nc = 3 is the number

of colors. The vertex, the hard gluon exchange with the
spectator and the penguin contributions, at µ = mb, are

VM = −18 +
∫ 1

0
dxg(x)φM (x),

P p
M,2 = c1

[
2
3

+GM (sp)
]

+ c3

[
4
3

+GM (0) +GM (1)
]

+(c4 + c6) [(nf − 2)GM (0) +GM (sc) +GM (1)]

−2ceff8g

∫ 1

0

dx
1 − x

φM (x) ,

P p,EW
M,2 = (c1 +Ncc2)

[
2
3

+GM (sp)
]

−3ceff7γ

∫ 1

0

dx
1 − x

φM (x) ,

P p
M,3 = c1

[
2
3

+ ĜM (sp)
]

+ c3

[
4
3

+ ĜM (0) + ĜM (1)
]

+(c4 + c6)
[
(nf − 2)ĜM (0) + ĜM (sc) + ĜM (1)

]
−2ceff8g ,

P p,EW
M,3 = (c1 +Ncc2)

[
2
3

+ ĜM (sp)
]

− 3ceff7γ ,

H =
4π2

Nc

fBfM1

m2
BF

B→M1
0 (0)

×
∫ 1

0

dξ
ξ
φB(ξ)

∫ 1

0

dx
x̄
φM2(x)

×
∫ 1

0

dy
ȳ

[
φM1(y) +

2µM1

mb

x̄

x
φp

M1
(y)

]
, (3)

where x̄ = 1 − x, ȳ = 1 − y and the parameter 2µM/mb

coincides with rχ. The functions g(x), GM (x) and ĜM (x)
are given by

g(x) = 3
(

1 − 2x
1 − x

lnx− iπ
)

+
[
2Li2(x) − ln2 x+

2 lnx
1 − x

− (3 + 2iπ) lnx

−(x → x̄)] ,

G(s, x) = 4
∫ 1

0
duuū ln[s− uūx]

= − 10
9

+
2
3

ln s− 8s
3x

+
4
3

(
1 +

2s
x

) √
4s
x

− 1 arctan
1√

4s
x − 1

,

GM (s) =
∫ 1

0
dxG(s− iε, x̄)φM (x),

ĜM (s) =
∫ 1

0
dxG(s− iε, x̄)φp

M (x), (4)

where si = m2
i /m

2
b are the mass ratios for the quarks

involved in the penguin diagrams, namely su = sd = ss = 0
and sc = (1.3/4.2)2.

As it can be noticed, except for the hard contribution
where the wave functions for bothM1 andM2 are involved,
the coefficients ai are different for theX and Y final states,
since they depend on the twist-2 and twist-3 wave functions
of the M2 meson. Thus, the twist-2 distribution amplitude
φK(x) has the following expansion in Gegenbauer polyno-
mials: [12, 16]

φK(x) = 6x(1 − x) (5)

×[1 + αK
1 C

(3/2)
1 (2x− 1) + αK

2 C
3/2
2 (2x− 1) + . . .] ,

with C
3/2
1 (u) = 3u, C3/2

2 (u) = (3/2)(5u2 − 1), αK
1 =

0.3 ± 0.3, and αK
2 = 0.1 ± 0.3. The corresponding twist-3

amplitude, φp
K , is 1.

The physical states η and η′ are mixtures of the SU(3)-
singlet and octet components η0 and η8 and therefore the
corresponding decay constants, in the two-angle mixing
formalism, are given by

fu
η′ =

f8√
6

sin θ8 +
f0√
3

cos θ0 ,
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fs
η′ = −2

f8√
6

sin θ8 +
f0√
3

cos θ0 , (6)

with θ8 = −22.2◦, θ0 = −9.1◦, f8 = 168 MeV, and f0 =
157 MeV [17].These lead to fu

η′ = 63.5 MeV, fs
η′ = 141 MeV

and to the relevant form factor for the B → η′ transition

FB→η′
0 = Fπ

0

(
sin θ8√

6
+

cos θ0√
3

)
= 0.137 . (7)

Even though the η′ flavor singlet meson has a gluonic
content which could bring about a contribution to the wave
function, this is supposed to be small [18] and therefore
we employ, in the calculation of Vη′ , P p

η′,2 and P p,EW
η′,2 in

ai(Y ), only the leading twist-2 distribution amplitude

φη′ = 6xx̄ . (8)

Also, since the twist-3 quark–antiquark distribution ampli-
tude does not contribute, due to the chirality conservation,
the penguin parts in ap

6(Y ) and ap
8(Y ) are missing. As for

the B meson wave function, we shall work with a strongly
peaked one, around z0 = λB/mB ≈ 0.066 ± 0.029, for
λB = 0.35 ± 0.15 GeV.

Putting everything together, we get, within the SM
improved factorization approach [12], the numerical value
BRSM(B → η′K) = 3.65 × 10−5, which although it is in
accordance with other theoretical estimations [5, 15, 17],
yet it lies below the experimental data [1–4]. Hence, in
spite of the “conservative” prediction that the conventional
mechanism should be the dominant one, it has become clear
that new contributions are needed in order to account for
the existent data.

3 Spectator hard-scattering mechanism

It has been considered that the spectator hard-scattering
mechanism (SHSM), depicted in Fig. 1, is a reliable frame-
work for this process, which significantly increases the value
of BR(B → η′K) [5, 13]. Following this idea, let us write
down the corresponding di-gluon exchange amplitude for
the b quark decaying into an s quark and a hard gluon:

Ahs = −iCF g
3
s

fB

2
√

6
fK

2
√

6

∫
dz dy φB(z)φK(y)

z
—
PB

z PB

y
—
PK

y PK

B- K -

h¢

Q1

Q2

Og

Fig. 1. Feynman diagrams of the hard-scattering mechanism
for B− → η′K−. The gluons are represented by the dashed lines

×Tr [γ5/PkΓµ(/PB +mB)γ5γν ]

× εµναβQ1αQ2β

Q2
1Q

2
2

Fη′g∗g∗(Q2
1, Q

2
2,m

2
η′) (9)

in terms of the effective b → sg vertex [19]

Γ a
µ =

GF√
2

gs

4π2 V
∗
psVpb t

a

× [
F p

1

(
Q2

1γµ −Q1µQ1
)
L− F p

2 iσµνQ
ν
1mbR

]
(10)

and the transition form factor [6]

〈g∗
ag

∗
b |η′〉 = −iδabε

µναβεa∗
µ εb∗

ν Q1αQ2βFη′g∗g∗(Q2
1, Q

2
2,m

2
η′) .
(11)

The quark contribution to the η′g∗g∗ vertex

Fη′g∗g∗(Q2
1, Q

2
2,m

2
η′) = 4παs

1
2Nc

∑
q=u,d,s

fq
η′ F (y, a) ,

(12)
with

F (y, a) =
∫ 1

0
dx

φη′(x)
x̄Q2

1 + xQ2
2 − xx̄m2

η′ + iε
+ (x ↔ x̄) ,

a2 = m2
η′/m2

B , (13)

will play an important role in the evaluation of the ampli-
tude Ahs. Performing the calculations in (9), we come to
the following expression of the hard-scattering amplitude:

Ahs = −2 i
GF√

2
V ∗

psVpb
α2

s

N3
c

fBfK(2fu
η′ + fs

η′)

×
∫ 1

0
dz φB(z)

∫ 1

0
dyφK(y)

× [
F p

1Q
2
1 ((PB ·Q1)(PK ·Q2) − (PK ·Q1)(PB ·Q2))

+F p
2mBmb

(
(PK ·Q2)Q2

1 − (PK ·Q1)(Q1 ·Q2)
)]

×F (y, a)
Q2

1Q
2
2
. (14)

With the gluon momenta

Q1 = z̄PB − ȳPK , Q2 = zPB − yPK , (15)

and neglecting, for the moment, both m2
η′ and m2

K , the
amplitude (14) becomes

Ahs = i
GF√

2
V ∗

psVpb
α2

s

2N3
c

fBfK(2fu
η′ + fs

η′)
1
z0

(16)

×
∫ 1

0
φK(y)

[
m2

BF
p
1 +mBmb

F p
2

y − z0

]
F (y, a) ,

where, for the dominant contribution coming from the in-
sertion of theOu,c

1 and themagnetic-penguinO8g operators,
one has [13]

F p
1 = c1

[
2
3

+G[sp, (1 − z0)(y − z0)]
]
, F p

2 = −2c8g .

(17)
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As far as concerns theF (y, a) function, which is an essential
input in the calculations, it can be first written as

F (y, a) = (18)

4
∫ 1

0
dx

6xx̄ (Q2
1 +Q2

2 − 2xx̄m2
η′)[

Q2
1 +Q2

2 − 2xx̄m2
η′

]2
− [(x− x̄)(Q2

1 −Q2
2)]

2

and we are led, after algebraic computations, to the fol-
lowing form:

F (y, a) = − 12
m2

η′

[
1 − Q2

1 −Q2
2

2m2
η′

log
∣∣∣∣Q2

1

Q2
2

∣∣∣∣
+

(Q2
1 −Q2

2)
2 −m2

η′(Q2
1 +Q2

2)

2m2
η′

√
p4 − 4Q2

1Q
2
2

× log

∣∣∣∣∣1 + 2

√
p4 − 4Q2

1Q
2
2

p2 −
√
p4 − 4Q2

1Q
2
2

∣∣∣∣∣
]
, (19)

where we have introduced the notation p2 = Q2
1+Q2

2−m2
η′ .

The logarithmic nature of theF (y, a) functionmakes it very
sensitive to the values of Q2

1, Q
2
2, m

2
η′ . We recommend [6]

for a detailed discussion of the η′g∗g∗ vertex in the case
of arbitrary gluon virtualities in the time-like, Q2

1 > 0,
Q2

2 > 0, p4 − 4Q2
1Q

2
2 > 0, and space-like, Q2

1 < 0, Q2
2 < 0,

p4 − 4Q2
1Q

2
2 < 0, regions.

Now, using

Q2
1 ≈ z̄

[
(y − z)m2

B + ȳm2
η′

]
,

Q2
2 ≈ z

[−(y − z)m2
B + ym2

η′
]
, (20)

where we have neglected m2
K , the dominant term

in (19) is

F (y, a)

≈ − 12
m2

η′

[
1 − 1

2

[
y − z

a2 + (1 − y − z)
]

× log
∣∣∣∣ a2 + y − z

z(z − y)

∣∣∣∣
+

(y − z)a2 + (y − z)2

2a2 |y − z|

× log
∣∣∣∣ y(1 − a2) − z + |y − z|
y(1 − a2) − z − |y − z|

∣∣∣∣
]
. (21)

On the other hand, by comparing the expressions in (20),
we clearly have the result that we are in the limit where
|Q2

1| � |Q2
2|. So, the function F (y, a) can be computed in

this approximation and it simply yields

F (y, a) = − 12
m2

η′

[
1 +

(
y − z0
a2 + ȳ

)
log

∣∣∣∣∣1 − 1
y−z0

a2 + ȳ

∣∣∣∣∣
]
.

(22)
As it can be seen from (20), the term (y − z0)/a2 + ȳ =
Q2

1/m
2
η′ takes a whole range of values, from −0.87 to 26.5,

as Q2
1 goes from the space-like to the time-like regions.

Consequently, a logarithmic singularity develops as y →
z0/(1 − a2), i.e. for Q2

1 → m2
η′ . Inspecting (16), we also

notice the pole at y = z0 in theF p
2 contribution. In addition,

while G[sp, (1− z0)(y− z0)] is divergence free for all s > 0,
the G[0, (1 − z0)(y − z0)] gets a logarithmic singularity at
y = z0. Hence, in the course of numerically evaluating the
scattering contribution, one must be careful about dealing
with these combined singularities in the convolution (16).

As in the case of other hard-scattering theoretical esti-
mations [5,13], the amplitude of this contribution contains,
as main uncertainty, the peaking position, z0, in the B me-
son distribution function and accordingly, the branching
ratio is extremely sensitive to it. For z0 ∈ [0.063, 0.068] and
the average value αs(Q2

1) = 0.28, the total branching ratio,
including besides the improved factorization approach the
spectator hard-scattering mechanism with the vertex func-
tion (22), is in the range from BR(B → η′K) = 6.58×10−5,
for z0 = 0.063, to BR(B → η′K) = 5.8 × 10−5, for
z0 = 0.068.

Comparing these results with the experimental data [1–
3], we notice that they are still below the lowest limit. An
alternative way which increases the BR and avoids the
uncertainties coming from the combined singularities in
the convolution (16) would presumably look more reliable.

4 SUSY gluonic dipole contribution

Employing the minimal supersymmetric standard model
(MSSM), one may add to the effective SM Hamiltonian (1)
the following SUSY contributions:

HSUSY
3−6 = −i

GF√
2

(VubV
∗
us + VcbV

∗
cs)

6∑
i=3

cSUSY
i Oi (23)

and

HSUSY
7−8 = −i

GF√
2

(VubV
∗
us+VcbV

∗
cs)

(
cSUSY
8g O8g +cSUSY

7γ O7γ

)
,

(24)
expressed in terms of the usual standard model operators
Oi and the gluon and photon operators

O8g =
gs

8π2mbs̄σµν(1 + γ5)Gµνb ,

O7γ =
e

8π2mbs̄σµν(1 + γ5)Fµνb , . (25)

The Wilson coefficients are given by [10,20]

cSUSY
3 (MSUSY) = − α2

s

2
√

2GF(VubV ∗
us + VcbV ∗

cs)m2
q̃

δbs
LL

×
(

− 1
9
B1(x) − 5

9
B2(x) − 1

18
P1(x) − 1

2
P2(x)

)
,

cSUSY
4 (MSUSY) = − α2

s

2
√

2GF(VubV ∗
us + VcbV ∗

cs)m2
q̃

δbs
LL
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×
(

− 7
3
B1(x) +

1
3
B2(x) +

1
6
P1(x) +

3
2
P2(x)

)
,

cSUSY
5 (MSUSY) = − α2

s

2
√

2GF(VubV ∗
us + VcbV ∗

cs)m2
q̃

δbs
LL

×
(

10
9
B1(x) +

1
18
B2(x) − 1

18
P1(x) − 1

2
P2(x)

)
,

cSUSY
6 (MSUSY) = − α2

s

2
√

2GF(VubV ∗
us + VcbV ∗

cs)m2
q̃

δbs
LL

×
(

− 2
3
B1(x) +

7
6
B2(x) +

1
6
P1(x) +

3
2
P2(x)

)
, (26)

where the P1(x), P2(x), B1(x), B2(x) functions, coming
from the gluino penguins and box diagrams, can be found
in [14] and

cSUSY
8g (MSUSY)

= −
√

2παs

GF(VubV ∗
us + VcbV ∗

cs)m2
g̃

δbs
LR

mg̃

mb
G0(x) ,

cSUSY
7γ (MSUSY)

= −
√

2παs

GF(VubV ∗
us + VcbV ∗

cs)m2
g̃

δbs
LR

mg̃

mb
F0(x) , (27)

where

G0(x) =
x

3(1 − x)4

× [
22 − 20x− 2x2 + 16x ln(x) − x2 ln(x) + 9 ln(x)

]
,

F0(x) = − 4x
9(1 − x)4

× [
1 + 4x− 5x2 + 4x ln(x) + 2x2 ln(x)

]
. (28)

In the above relations, x = m2
g̃/m

2
q̃, with mg̃ being the

gluino mass and mq̃ an average squark mass, while the
factor δbs = ∆bs/m2

q̃, where ∆bs are the off-diagonal terms
in the sfermion mass matrices, comes from the expansion
of the squark propagator in terms of δ, for ∆ 	 m2

q̃. In
principle, the dimensionless quantities δbs, measuring the
size of the flavor changing interaction for the s̃b̃mixing, are
present in all the SUSY corrections to the Wilson coeffi-
cients in (1) and they are of four types, depending on the L
orR helicity of the fermionic partners. A simultaneous anal-
ysis, in the full parameter space, for both the LL and LR
squark mixings, is difficult to perform. However, when deal-
ing with the SUSY contributions to the Wilson coefficients,
one finds major differences between them. In this respect,
by computing {cSUSY

i }i=3,6, for MSUSY = mq̃ = 500 GeV
and x ≈ 1, we have noticed that these corrections can
be neglected. Since the ratios of their values and the SM
Wilson coefficients are in the range 10−8 to 10−6, they cer-
tainly do not bring about any significant contribution to
the branching ratio. The situation looks different as far as
concerns the SUSY Wilson coefficients (27) which are going

to play an important role in the next discussion. Indeed,
by comparing the expressions (26) and (27), we notice an
enhancement factor of mg̃/mb in (27). When mg̃ is of the
order of a few hundred GeV, these SUSY contributions
will dominate the SM Wilson coefficients, which are pro-
portional to mb/m

2
W , and one can anticipate a large effect

on the branching ratio, even for small values of δLR.
By considering only the SUSY corrections (27), we re-

place, in (3), the Wilson coefficients ceff8g and ceff7γ , by the
total quantities

ctotal8g [x, δ] = ceff8g + cSUSY
8g (mb) ,

ctotal7γ [x, δ] = ceff7γ + cSUSY
7γ (mb) , (29)

where cSUSY(mb) have been evolved from MSUSY = mg̃

down to the µ = mb scale, using the relations [10,19]

cSUSY
8g (mb) = ηcSUSY

8g (mg̃) , (30)

cSUSY
7γ (mb) = η2cSUSY

7γ (mg̃) +
8
3

(η − η2)cSUSY
8g (mg̃) ,

with

η = (αs(mg̃)/αs(mt))
2/21 (αs(mt)/αs(mb))

2/23
. (31)

We choose for mq̃ the value mq̃ = 500 GeV and write
mg̃ asmg̃ =

√
xmq̃ and δbs

LR ≡ ρeiϕ. As the total branching
ratio can be expressed in terms of three free parameters:
x, ρ, ϕ, one is able to plot the BRtotal, in units of 10−5, as
a function of (ρ, ϕ), for different values of x. By inspecting
the 3D plots displayed in Fig. 2, for x = 0.3 (the upper
surface) and x = 1 (the lower surface), we notice that the
SUSY contributions (27) to the Wilson coefficients have
significantly increased the SM value, BRSM = 3.65×10−5,
represented by the horizontal plane.Using the experimental
data, one is able now to determine the δbs

LR complex values,
for each x.

Let us take, for example, x = 1, pointing out that the
same discussion can be performed for any x value. For
ρ = 0.005, the BRtotal is increasing from 5.1 × 10−5, for
ϕ ≈ ±π/3, to the maximum value BRtotal = 6.24 × 10−5,
for ϕ = 0. As ρ goes to bigger values, we find a better
agreement with the large experimental data. For ρ = 0.01,
the data can be accommodated for ϕ ≈ −π/4, while, for
ρ = 0.02, one has to impose ϕ ≈ −8π/15.

Finally, let us compare these results with the con-
straints given by other measurements, such as b → sγ
decay. Using the experimental range for BR(B → Xsγ),
the allowed region, with 95% C.L., for cSUSY

8g /cSM
8g ≡ r eiδ

is discussed, in detail, in [10]. In our approach, the pair
{ρ = 0.01, ϕ = −π/4}, for which the branching ratio co-
incides with the average data value, leads to cSUSY

8g /cSM
8g =

−5.014 + 4.85 i, which means, turning to the parameters r
and δ from [10], r = 6.98 and δ = 136◦. These values fit
perfectly to the allowed region. As ρ goes to 0.02 and the
average experimental data impose ϕ = −8π/15, the ratio
cSUSY
8g /cSM

8g = 1.23 + 13.9 i leads to r = 13.95 and δ = 85◦,
which are outside the boundaries of the constraint.
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Fig. 2. Total branching ratios (SM + SUSY) for B− → η′K−,
in units of 10−5, as functions of (ρ, ϕ), for x = 0.3 (the upper
plot) and x = 1 (the lower plot), compared to the SM estimation
represented by the horizontal plane

5 Concluding remarks

At first, we have analyzed the B− → η′K decay and we
have computed its branching ratio using the improved fac-
torization method developed by Beneke et al. [12]. Since
the obtained result, BRSM = 3.65 × 10−5, is much below
the experimental data, [1–4], one may consider this as a
clear sign for adding new contributions [22].

In this respect, the so-called spectator hard-scattering
mechanism, which is depicted in Fig. 1, has allowed us to
compute the amplitude in terms of the effective b → sg
vertex and the transition form factor (11) which contains
the quark contribution to the η′g∗g∗, (21), as an essential
input. The total BR has, as a main uncertainty, the peaking
position in the B meson wave function, z0 = λB/mB ,
with λB = 0.35 ± 0.15 GeV. Even though the results are
closer to the experimental data, we point out the combined
singularities in the amplitude convolution (16) which must
be treated carefully.

Secondly, we extend the SM to the MSSM. As the
gluonic dipole interactions can be significantly enhanced
compared to the SM, by the factor mg̃/mb, we add SUSY
contributions to the Wilson coefficients ceff8g and ceff7γ . Conse-
quently, the totalBR is expressed in terms of the parameters
x = m2

g̃/m
2
q̃, and δbs

LR = ρeiϕ whose contribution turns out
to be important, even for very small values of ρ. Finally,
by inspecting the 3D-graphics (see Fig. 2), representing the
BRtotal for x = 0.3 (the upper surface) and x = 1 (the lower
surface), one is able to find numerical values for ρ and ϕ
that can account for the experimental data and agree with
the constraint coming from the b → sγ decay.
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